	Primary Mathematics Scheme of Work: Class 5 Year 6					
	Week 1 ${ }^{\text {1 }}$ Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Autumn 1	Number: Place Value	Number: Addition, Subtraction, Multiplication and Division				
Autumn 2	Number: Fractions		Measurement: Converting Units of measure		Number: Fractions	
Spring 1	Number: Decimals	Number: Fractions, Decimals and Percentages			Number: Ratio	
Spring 2	Measurement: Area, Perimeter and Volume	Statistics	Number: Algebra	Geometry: Shape	Geometry: Position and Direction	
Summer 1	Number: Consolidation	Geometry	ape	Geometry: Po Direction	osition and	
Summer 2	Number: Fractions, Decimals and Percentages	Number:		Number: Alge	bra	

Year 6

Place Value

Key concepts (National Curriculum statements)

- identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places
- read, write, order and compare numbers up to 10000000 and determine the value of each digit
- use negative numbers in context, and calculate intervals across zero
- identify common factors, common multiples and prime numbers

Notes and guidance (non-statutory)

- Pupils use the whole number system, including saying, reading and writing numbers accurately

- Common factors can be related to finding equivalent fractions.

Possible Themes

- Understand and use decimals with up to three decimal places

Key learning points

- Work with numbers up to ten million
- Explore the use of negative numbers
- Develop understanding of factors and multiples
- Investigate prime numbers

Write and read numbers up to and including 10000000

- Compare and order numbers up to and including 10000000
- Multiply numbers by 10
- Multiply numbers by 100
- Multiply numbers by 1000
- Divide numbers by 10
- Divide numbers by 100
- Divide numbers by 1000
- Understand and use negative numbers when working in context, such as temperature
- Calculate intervals across zero
- Find common multiples of two numbers
- Find common factors of two numbers
- Approximate any number by rounding to a specified degree of accuracy; e.g. nearest 1,10,100,1000, decimal place, etc
- Understand estimating as the process of finding a rough value of an answer or calculation
- Use estimation to predict the order of magnitude of the solution to a decimal calculation, including decimals
- Check the order of magnitude of the solution to a calculation, including decimals

NCETM - Ready to Progress

$\checkmark \quad$ Understand and use place value in numbers with up to seven digits
$\checkmark \quad$ Multiply and divide whole numbers by 10, 100, 1000
$\checkmark \quad$ Multiply and divide numbers with one decimal place by 10, 100, 1000
$\checkmark \quad$ Know the meaning of 'factor' and 'multiple' and 'prime'

Read, write, order and compare numbers up to 10000000 and determine the value of each digit

- Children should be able to determine the steps used in different scales, and so complete activities such as; 960 980

Round any whole number to a required degree of accurac

- Children should be able to circle the best estimate of the answer to questions such as;
$72.34 \div 8.91$
When given
$6 \quad 7891011$ as possible answers
- Children should estimate the position of numbers on a number line. They should suggest which number lies about two-fifths of the way along a line from 0 to 1000 , or a line from 0 to 1 . They should be able to justify their decisions.

Use negative numbers in context, and calculate intervals across zero

- Children should be able to work with negative numbers in a similar way, determining values on a scale and estimating.

Solve number and practical problems that involve all of the above

- Children should be able to use rounding and inverse operations to estimate and check calculations such as;
- The temperature inside an aeroplane is $20^{\circ} \mathrm{C}$ The temperatures outside the aeroplane is $-30^{\circ} \mathrm{C}$. What is the difference between these temperatures?
Solve problems involving multiplication and division
Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy Children should be able to
- Give the best approximation to work out 4.4×18.6 and explain why. Answer questions such as: roughly, what answer do you expect to get? How did you arrive at that estimate? Do you expect your answer to be greater or less than your estimate? Why?

Reasoning opportunities and probing questions Mathematical Language

- Convince me that 109 is a prime number
- Jenny writes $2.54 \times 10=25.4$. Kenny writes $2.54 \times 10=25.40$. who do you agree with? Explain why
- Look at this number (24054 028). Show me another number (with 4, 5, 6, 7 digits) that includes a 5 with the same value. And another. And another.
- Convince me a common factor of 12 and 30 is 6

Place value

Digit

Negative number
(Common) multiple
(Common) factor
Divisible
Prime number, Composite number

Possible misconceptions

- Some pupils confuse factors and multiples.
- Some pupils can confuse the language of large (and small) numbers since the prefix 'milli- means 'one thousandth' (meaning that there are 1000 millimetres in a metre for example) while one million is actually a thousand thousand.
- Some pupils may not realise that degrees $\left({ }^{\circ}\right)$ and degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ are Some pupils may not realise that degrees (${ }^{\circ}$) and
two different and distinct units of measurement

Addition, Subtraction, Multiplication and Division

Key concepts (National Curriculum statements)
 \section*{Pupils should be taught to:}

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Notes and guidance (non-statutory)

- Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division
- They undertake mental calculations with increasingly large numbers and more complex calculations.
- Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency
- Pupils round answers to a specified degree of accuracy, for example, to the nearest $10,20,50$ etc., but not to a specified number of significant figures.
- Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$.
- Common factors can be related to finding equivalent fractions.

Possible Themes	Key learning points

- Develop mental calculation skills
- Extend written methods of multiplication
- Know and use the order of operations
- Solve problems involving addition, subtraction and multiplication
- Develop written methods of short division for numbers up to four-digits divided by a one-digit number
- Deal with remainders when carrying out division
- Solve problems involving the four operations
- Carry out calculations mentally involving numbers up to 4 digits.
- Multiply a four-digit number by a two-digit number using long multiplication
- Carry out calculations involving a mixture of multiplication and division
- Carry out calculations involving mixture of addition and subtraction
- Carry out calculations involving mixture of multiplication and addition/subtraction
- Carry out calculations involving mixture of division and addition/subtraction
- Solve multi-step problems involving addition, subtraction and/or multiplication
- Divide a three-digit number by a two-digit number using a formal written method of division with no remainder
- Divide a three-digit number by a two-digit number using a formal written method of division with a remainder
- Divide a four-digit number by a two-digit number using a formal written method of division with no remainder
- Divide a four-digit number by a two-digit number using a formal written method of division with a remainder
- Understand how to write the remainder to a division problem as a whole number remainder or as a fraction
- Understand how to interpret remainder to a division problem appropriately for the context
- Solve problems involving division
$\checkmark \quad$ Recall multiplication facts for multiplication tables up to 12×12
\checkmark Recall division facts for multiplication tables up to 12×12
$\checkmark \quad$ Understand the commutativity of multiplication and addition
\checkmark Multiply a three-digit number by a two-digit number using long multiplication
$\checkmark \quad$ Use column addition and subtraction for numbers with more than four digits
$\checkmark \quad$ Use knowledge of multiplication tables when dividing
$\checkmark \quad$ Know how to use short division
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Two numbers have a difference of 1.583 . One of the numbers is 4.728 . What is the other? Is this the only answer? solve problems involving addition, subtraction, multiplication and division
use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Identify subtractions they can do without writing anything down

Identify why it is possible to solve a calculation mentally, explain the clues they looked for and then solve it
$>\quad$ Peter has $£ 10$. He buys 3 kg of potatoes at 87 p per kg and 750 g of tomatoes at $£ 1.32$ per kg . How much money does he have left?

- Each tile is 4 centimetres by 9 centimetres

Calculate the width and height of the design
> Write down the calculations that you did

multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
$>$ Look at long-multiplication calculations containing errors, identify the errors and determine how they should be corrected.
> Solve problems such as:Printing charges for a book are 3 p per page and 75 p for the cover. I paid $£ 4.35$ to get this book printed How many pages are there in the book? Write down the calculations that you did. Seeds are $£ 1.45$ for a packet. I have $£ 10$ to spend on seeds. What is the greatest number of packets I can buy?
perform mental calculations, including with mixed operations and large numbers
> Use mental strategies to calculate in their heads, using jottings and/or diagrams where appropriate. For example, to calculate 24 $\times 15$, they multiply 24×10 and then halve this to get 24×5, adding these two results together. They record their method as ($24 \times$ $10)+(24 \times 5)$. Alternatively, they work out $24 \times 5=120$ (half of 24×10), then multiply 120 by 3 to get 360 .
$>$ identify common factors, common multiples and prime numbers
> Children should be able to answer questions such as:

- How can you use factors to multiply 17 by 12?
$>$ Start from a two-digit number with at least six factors, e.g. 72. How many different multiplication and division facts can you make using what you know about 72 ? What facts involving decimals can you derive?
$>\quad$ What if you started with 7.2? What about 0.72?
> Which three prime numbers multiply to make 231?

use their knowledge of the order of operations to carry out calculations involving the four operations

$>$ Children should be able to find answers to calculations such as $5.6 \square=0.7$ or 3×0.6, drawing on their knowledge of number facts and understanding of place value. They should be able to approximate, use inverses and apply tests of divisibility to check their results.
> Children should know the square numbers up to 12×12 and derive the corresponding squares of multiples of 10 , for example 80 $\times 80=6400$.
divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

- Every day a machine makes 100000 paper clips, which go into boxes. A full box has 120 paper clips. How many full boxes can be made from 100000 paper clips?
Each paper clip is made from 9.2 centimetres of wire. What is the greatest number of paper clips that can be made from 10 metres of wire?
- A DJ has two different sized storage boxes for her CDs. Small boxes hold 15 CDs. Large boxes hold 28 CDs. The DJ has 411 CDs. How could the DJ pack her CDs?
- Find missing digits in otherwise completed long multiplication calculations
- Convince me that $2472 \times 12=29664$
- Why have you chosen to add (subtract, multiply)?

NCETM: Addition and Subtraction Reasoning

- NCETM: Multiplication and Division Reasoning
- Find missing digits in otherwise completed long / short division calculations
- Show me a calculation that is connected to $147 \times 26=3822$. And nother, and another
- Show me a division calculation that has no remainder. Now show me a division by a two-digit number that has no remainder. And now, a four-digit number divided by a two-digit number that has no remainder. And now, with a remainder of 3 ...

Additio

Subtraction
Sum, Total
Difference, Minus, Less
Column addition
Column subtraction
Operation
Multiply, Multiplication
Times
Product
Commutative
Factor
Short multiplication
Long multiplication
Estimate
Commutative
Divide, Division, Divisible
Divisor, Dividend, Quotient, Remainder
Factor
Short division
Long division
Remainder
Operation
Estimate

- Some pupils may write statements such as 140-190 = 50
- When subtracting mentally some pupils may deal with columns separately and not combine correctly; e.g. 180-24: $180-20=160$. Taking away 4 will leave 6 . So the answer is 166
- The use of BIDMAS (or BODMAS) can imply that division takes priority over multiplication, and that addition takes priority over subtraction. This can result in incorrect calculations.
- Some pupils may write statements such as $12 \div 132=11$
- Formal written methods of addition, subtraction and multiplication work from right to left. Formal division works from left to right.
- When using short division many pupils will at first struggle to deal correctly with any division where the divisor is greater than the first digit of the dividend; for example:

\[

\]

- $3 \div 8=0$ remainder 3 , and so the 3 should be moved across. Instead, the 8 has been 'moved across' and therefore everything that follows has been correctly carried out based on an early misunderstanding.

Fractions, Decimals and Percentages

Key concepts (National Curriculum statements)
 \section*{Pupils should be taught to:}

- use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- compare and order fractions, including fractions > 1
- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- multiply simple pairs of proper fractions, writing the answer in its simplest form
- divide proper fractions by whole numbers
- associate a fraction with division and calculate decimal fraction equivalents
- identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places

Notes and guidance (non-statutory

- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places
- solve problems which require answers to be rounded to specified degrees of accuracy
- recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

Possible Themes

- Explore the equivalence between fractions - Use the equivalence between fractions - Explore the equivalence between fractions, decimals and percentages - Calculate with fractions - Calculate with decimals - Calculate with percentages	- Use common factors to simplify fractions - Use common multiples to find equivalent fractions - Compare and order fractions - Compare and order fractions, including fractions > 1 - Understand a fraction is associated with division - Work out the decimal equivalents of fifths, eighths and tenths - Know simple fractions, decimals and percentages equivalences (e.g. $10 \%, 20 \%, 25 \%, 50 \%, 75 \%, 100 \%$) - Find equivalencies between fractions, decimals and percentages - Add fractions with different denominators - Add a mixed number and a fraction, including with different denominators - Add mixed numbers, including with different denominators - Subtract fractions with different denominators - Subtract a mixed number and a fraction, including with different denominators - Subtract mixed numbers, including with different denominators - Multiply a proper fraction by a proper fraction - Divide a proper fraction by a whole number - Multiply U.t by U - Multiply U.th by U - Calculate percentages of a quantity - Solve problems involving the use of percentages to make comparisons
Prerequisite	NCETM - Ready to

$\checkmark \quad$ Understand the concept of a fraction as a proportion
$\checkmark \quad$ Understand the concept of equivalent fractions
\checkmark Understand the concept of fractions, decimals and percentages being equivalen
\checkmark Know standard fraction / decimal equivalences (e.g. $1 / 2=0.5,1 / 4=0.25,1 / 10=0.1$)
\checkmark Know that a percentage means 'out of 100
$\checkmark \quad$ Convert between mixed numbers and improper fractions
\checkmark Find equivalent fractions
$\checkmark \quad$ Add and subtract fractions when one denominator is a multiple of the other
$\checkmark \quad$ Multiply a proper fraction by a whole number
$\checkmark \quad$ Use the formal written method of short multiplication
$\checkmark \quad$ Know the effect of multiplying and dividing by 10 and 100
\checkmark Know percentage equivalents of $1 / 2,1 / 4,3 / 4,1 / 5,2 / 5,4 / 5$
use common factors to simplify fractions; use common multiples to express fractions in the same denomination
$>\quad$ Children should be able to recognise that a fraction such as $5 / 20$ can be reduced to an equivalent fraction of $1 / 4$ by dividing both numerator and denominator by the same number [cancelling] They should also be familiar with identifying fractions in differen units. E.g. what fraction is 20 pence of two pounds? Of four pounds etc...
compare and order fractions, including fractions >1
Children should be able to:
$>$ i] Position fractions on a number line; e.g. mark fractions such as $7 / 5,11 / 20,18 / 12$ on a number line graduated in tenths
> ii] Answer questions such as: What number is half way between $5 \frac{1 / 4}{4}$ and $5 \frac{1}{2}$?
$>$ iii] Which is larger, $1 / 3$ or $2 / 5$? Explain how you know.
associate a fraction with division to calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)

- Children should be able to find fractions of numbers and quantities;
i] What fraction of $£ 1$ is 35 p, ... 170p ?
ii] Write ${ }^{23} / 100$ of 4 kilogrammes in grams
iii] What fraction of 1 litre is 413 ml ?
$>$ Convert a fraction to a decimal using known equivalent fractions: i] $1 / 4=0.25$ ii] $2 / 5=0.4$
associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$) Children should be able to:

Explain how much pizza each person would get if they divided 4 pizzas between 5 people, as a fraction and a decimal
recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
$>$ Children should be able to put a ring around the percentage that is equal to three-fifths;

- $20 \% 30 \% 40 \% 50 \% 60 \%$
> As well as circle the two fractions that are equivalent to 0.6 .
$6 / 10^{1 / 60} 60 / 1001 / 6$
add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
$>$ Children should be able to solve practical problems such as;
> Here is a chocolate bar.
> William eats 3 pieces and Amber eats 2 pieces. What fraction of the chocolate bar
$>$ Joe has some pocket money. He spends three-quarters of it. He has fifty pence left.
remains? money did he have?
multiply simple pairs of proper fractions, writing the answer in its simplest form, (e.g. $1 / 4 \times 1 / 2=1 / 8$)
$>\quad$ Children should be able to:
] Recognise that $1 / 4$ of $12,1 / 4 \times 12$ and 12 divided by 4 are equivalent
ii] Use cancellation to simplify the product of a fraction and an integer
eg $1 / 5 \times 15=3$
$2 / 5 \times 15=2 \times 1 / 5 \times 15=2 \times 3=6$
ii] Work out how many $1 / 2$ s in 15 , how many $2 / 5$ in 15 , how many $2 / 5$ s in 1 etc.
divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6$)
Children should be able to:
$>$ Decide whether they would prefer to share $1 / 2$ of a pizza with 2 people or $3 / 4$ of a pizza with 4 people and explain why associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$) Children should be able to:
$>$ Explain how much pizza each person would get if they divided 4 pizzas between 5 people, as a fraction and a decima identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
$>$ Children should be able to identify the value of each digit in the number 17.036 and multiply and divide this by 10.100 and 1000 multiply one-digit numbers with up to two decimal places by whole numbers
$>$ Children should be able to calculate the answer to questions such a

Reasoning opportunities and probing questions Mathematical Language

- Show me another fraction that is equivalent to this one. And another. And another ..
- Convince me that $3 / 8=0.375$
- If you know that $1 / 10=0.1=10 \%$, what else can you work out?
- Jenny is simplifying fractions. She has the fraction $16 / 64$. Jenny says, 'if I cancel out the sixes then $16 / 64=1 / 4$. .' Do you agree with Jenny? Why?
- NCETM: Fractions Reasoning
- Show me an 'easy' ('difficult') pair of fractions to add (subtract) And another. And another
- Kenny thinks that $\frac{7}{10}-\frac{2}{7}=\frac{5}{3}=1 \frac{2}{3}$. Do you agree with Kenny?
- Jenny thinks that you can only multiply fractions if they have the same common denominator. Do you agree with Jenny? Explain.
- Benny thinks that $\frac{4}{10} \div 2=\frac{4}{5}$. Do you agree with Kenny? Explain.
- Lenny says ' 20% of $£ 60$ is $£ 3$ because $60 \div 20=3$ '. Do you agree?

Improper fraction, Proper fraction, Vulgar fraction, Top-heavy fraction Percentage
Decimal
Proportion
Simplify Equivalent Lowest terms

Possible misconceptions

- A fraction can be visualised as divisions of a shape (especially a circle) but some pupils may not recognise that these divisions must be equal in size, or that they can be divisions of any shape.
- Pupils may not make the connection that a percentage is a different way of describing a proportion
- Some pupils may think that simplifying a fraction just requires searching for, and removing, a factor of 2 (repeatedly)
- Some pupils may think that you simply can simply add/subtract the whole number part of mixed numbers and add/subtract the fractional art of mixed numbers when adding/subtracting mixed numbers, e.g. $3 \frac{1}{3}-2 \frac{1}{2}=$ $1 \frac{-1}{6}$
- Some pupils may make multiplying fractions over complicated by applying the same process for adding and subtracting of finding common denominators.
- Some pupils may think that as you divide by 10 to find 10%, you divide by 15 to find 15%, divide by 20 to find 20%, divide by 100 to find 100%, etc.

Ratio and Proportion

Key concepts (National Curriculum statements)

Pupils should be taught to:

- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
- solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is known or can be found
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

Notes and guidance (non-statutory)

- Pupils recognise proportionality in contexts when the relations between quantities are in the same ratio (for example, similar shapes and recipes).
- Pupils link percentages or 360° to calculating angles of pie charts.
- Pupils should consolidate their understanding of ratio when comparing quantities, sizes and scale drawings by solving a variety of problems. They might use the notation a:b to record their work.

Possible Themes

Key learning points

- Solve problems involving scaling
- Explore enlargement
- Solve problems involving sharing and grouping

Prerequisite

- Solve simple problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts; e.g. find the value of the parts, given the whole)
- Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts; e.g. find the value of the whole and parts, given one part)
- Use a scale factor to solve problems involving similar shapes
- Find the scale factor of similar shapes
- Solve problems involving unequal sharing or grouping problems using fractions
- Solve problems involving unequal sharing or grouping problems using multiples

NCETM - Ready to Progress
solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
Answer problems such as:
$>\quad$ Here is a recipe for pasta sauce.

Pasta sauce

300 g tomatoes
120 g onions
75 g mushrooms
Sam makes the pasta sauce using 900 g of tomatoes. What weight of onions should he use? What weight of mushrooms?
A recipe for 3 portions requires 150 g flour and 120 g sugar. Desi's solution to a problem says that for 2 portions he needs 80 g flour and 100 g sugar. What might Desi have done wrong? Work out the correct answer.
$>\quad$ This map has a scale of 1 cm to 6 km .

The road from Ridlington to Carborough measured on the map is 6.6 cm long. What is the length of the road in kilometres? solve problems involving similar shapes where the scale factor is known or can be found

Solve simple problems involving direct proportion by scaling quantities up or down, for example:

- Two rulers cost 80 pence. How much do three rulers cost?
- Use the vocabulary of ratio and proportion to describe the relationships between two quantities solving problems such as:
> Two letters have a total weight of 120 grams. One letter weighs twice as much as the other. Write the weight of the heavier letter.
> The distance from A to B is three times as far as from B to C. The distance from A to C is 60 centimetres. Calculate the distance from A to B. A \qquad
solve problems involving unequal sharing and grouping using knowledge of fractions and multiples
> Relate fractions to multiplication and division (e.g. $6 \div 2=1 / 2$ of $6=6 \times 1 / 2$), simplify fractions by cancelling common factors, find fractions of whole-number quantities and solve problems such as:
What fraction is 18 of 12
What fraction is 500 ml of 400 ml ?
What is $14 / 35$ in its simplest form? $2 / 5$
$>$ What $1 / 3 \times 15$? What about $15 \times 1 / 3$? How did you work it out?
$>$ What is two thirds of 66?
What is three quarters of 500 ?

| - (Given a recipe for 4 people) show me an amount of food that is |
| :--- | :--- | :--- |
| needed for 8 people, 6 people, 9 people. Show me an amount of |
| food that is needed for a number of people of your choice. And |
| another. And another ... |\quad| Proportion |
| :--- |
| Quantity |
| Integer |
| Similar (shapes) |
| - Convince me that the second shape is an enlargement of the first |
| shape |\quad| Enlargement |
| :--- |
| Scale factor |
| Kenny has no sweets. Jenny gives $1 / 3$ of her sweets to Kenny. |
| Jenny now has 18 sweets. Kenny thinks that Jenny had 54 sweets |
| to start with. Kenny is wrong. Explain why. |
| Share |
| Multiples |

- Many pupils will want to identify an additive relationship between two quantities that are in proportion and apply this to other quantities in order to find missing amounts
- When finding a fraction of an amount some pupils may try to use a rule formed without the necessary understanding. As a result they will muddle the operations, dividing by the numerator and multiplying by the denominator.
- When constructing an enlargement some pupils may only apply the scale factor in one dimension; for example, 'enlarging' a 2 by 4 rectangle by a scale factor of 2 and drawing a 2 by 8 rectangle.

Algebra

Key concepts (National Curriculum statements)

Pupils should be taught to:

- use simple formula
- generate and describe linear number sequences
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with two unknowns
- enumerate possibilities of combinations of two variables

Notes and guidance (non-statutory)

- missing numbers, lengths, coordinates and angles
- formulae in mathematics and science
- equivalent expressions (for example, $a+b=b+a$)
- generalisations of number patterns
- number puzzles (for example, what two numbers can add up to)

Possible Themes

- Use simple formulae written in words
- Create simple formulae written in word
- Work with formulae written algebraically

Key learning points

- Use a simple one-step formula written in words
- Use a simple two-step formula written in word
- Use simple formula expressed in symbols
- Convert between miles and kilometres
- Recognise and describe a linear sequence
- Find the next terms in a linear sequence
- Find a missing term in a linear sequence
- Generate a linear sequence from its description
- Write a formula for the cost of c chews at 4 p each.
(Write a formula for the nth term of this sequence: $3,6,9,12,15$..
The perimeter of a rectangle is $2 \times(l+b)$, where l is the length and b is the breadth of the rectangle.
$>$ What is the perimeter if $\mathrm{I}=8 \mathrm{~cm}$ and $\mathrm{b}=5 \mathrm{~cm}$?
$\checkmark \quad$ Know the order of operations
$\checkmark \quad$ Know the fact that area of rectangle $=$ length \times width
$>$ The number of bean sticks needed for a row which is m metres long is $2 m+1$. How many bean sticks do you need for a row which is 60 metres long?
$>$ Plot the points which show pairs of numbers with a sum of 9 .

Reasoning opportunities and probing questions Mathematical Language

- Look at this formula. Write down a fact that it tells you. And another. And another ...
- Jenny and Kenny are using the formula 'Cost in pounds $=40+20 \times$ number of hours' to work out the cost for three hours. Jenny writes down $£ 180$. Kenny writes down $£ 100$. Who do you agree with? Why?
- Always / Sometimes / Never: The formula $T=4 n+6$ results in an odd number.
- NCETM: Algebra Reasonin

Formula, Formulae

Expression
Variable
Substitute
Symbol
Mile
Kilometre
Metric Imperial

Possible misconceptions

- Some pupils may apply the order of operations incorrectly when working with two step formulae
- Units must be consistent when using formulae. For example, a mobile phone plan might charge $£ 15$ per month plus 5 p for every text. The formula 'Monthly cost $=15+5 \times$ number of texts is wrong because amounts in both pounds and pence are involved. Monthly cost (in pence) $=1500+5 \times$ number of texts is one correct way of writing the formula.
- It is not advisable to abbreviate the formula 'kilometres $=$ miles $\times 1.6$ ' using letters. ' m ' is the normal abbreviation for metres and ' k ' can represent $£ 1000$. If ' $k m$ ' is used it could even be interpreted as ' $k \times m$ '.

Measurement

Key concepts (National Curriculum statements)

Pupils should be taught to:

- solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate

- convert between miles and kilometres
- recognise that shapes with the same areas can have different perimeters and vice versa
- recognise when it is possible to use formulae for area and volume of shapes
- calculate the area of parallelograms and triangles
- calculate, estimate and compare volume of cubes and cuboids using standard units

Notes and guidance (non-statutory)

- Pupils connect conversion (for example, from kilometres to miles) to a graphical representation as preparation for understanding linear/proportional graphs
- They know approximate conversions and are able to tell if an answer is sensible. Using the number line, pupils use, add and subtract positive and negative integers for measures such as temperature.

- Solve problems involving measurement - Explore area - Investigate volume - Solve problems involving area and volume	- Convert between non-adjacent metric units length and mass from the smaller unit to the larger unit; e.g. centimetres to kilometres - Convert between non-adjacent metric units length and mass from the larger unit to the smaller unit; e.g. kilometres and centimetres - Convert between non-adjacent time units; e.g. hours to seconds - Solve problems involving converting between measures - Recognise that shapes with the same areas can have different perimeters and vice versa - Calculate the area of a parallelogram - Calculate the area of a triangle - Estimate the volume of cubes and cuboids - Calculate the volume of cuboid, including cubes - Recognise when it is possible to use formulae to calculate area and volume - Convert between metric units of area in simple cases - Convert between metric units of volume in simple cases
Prerequisite	NCETM - Ready to Progress

$\checkmark \quad$ Convert between adjacent metric units of length, mass and capacity
$\checkmark \quad$ Know rough equivalents between inches and cm , feet and cm, kg and lb , pint and ml
\checkmark Use decimal notation to two decimal places when converting between metric unit
\checkmark Know the meaning of perimeter (area, volume, capacity)
\checkmark Know that the area of a rectangle is given by the formula area $=$ length \times width
\checkmark Know that area can be measured using square centimetres or square metres, and the abbreviations cm^{2} and m^{2}
$\checkmark \quad$ Know that volume is measured in cubes

solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places wher

 appropriateThey should be able to answer questions such as: approximately how many litres are there in 3 gallons? Give your answer to the nearest litre.
use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
$>\quad$ This scale (not actual size) shows length measurements in centimetres and feet.
L Look at the scale. Estimate the number of centimetres that are equal to $2 \frac{1}{2}$ feet.
$>$ Estimate the difference in centimetres between 50 cm and 1 foot.
convert between miles and kilometres

> Pupils should know the approximate equivalence between commonly used imperial units and metric units:
e.g. 1 litre is approximately 2 pints (more accurately, $13 / 4$ pints)
4.5 litres is approximately 1 gallon or 8 pints

1 kilogram is approximately 2 lb (more accurately, 2.2 lb)
30 grams is approximately 1 oz
8 kilometres is approximately 5 miles
$>$ Children should be able to use conversion graphs that show miles/kilometres. They should be able to use it to estimate a distance of 95 miles in kilometres.

- Children should be able to draw a flow chart to help someone else convert between $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ and km .
- They should be able to answer questions such as: approximately how many litres are there in 3 gallons? Give your answer to the nearest litre.
- This scale (not actual size) shows length measurements in centimetres
- Look at the scale. Estimate the number of centimetres that are equal to
- Estimate the difference in centimetres between 50 cm and 1 foot.
- Pupils should know the approximate equivalence between commonly and metric units:
 and feet. $21 / 2$ feet.
pproximately 2 pints (more accurately, $1^{3 / 4}$ pints), 4.5 litres is approximately 1 gallon or 8 pits, (more accurately, 2.2 lb), 30 grams is approximately 1 oz 8 kilometres is approximately 5 mile
- Children should be able to use conversion graphs that show miles/kilometres. They should be able to use it to estimate a distance of 95 miles in kilometres.
- The perimeter of a square is 72 centimetres.
- The square is cut in half to make two identical rectangles.
- What is the perimeter of one rectangle?
- Children should be able to calculate the perimeters of compound shapes that can be rectangles. For example,
This is a centimetre grid. Draw 3 more lines to make a parallelogram with an area of $10 \mathrm{~cm}^{2}$.

split into
Use a ruler.
- Show me a metric (imperial) unit of measure. And another. And another.
- Kenny thinks that $2.5 \mathrm{~km}=25000 \mathrm{~cm}$. Do you agree with Kenny? Explain your answer.
- Convince me that 4.25 kg does not equal 425 g .
- NCETM: Measurement Reasoning
- 'Show me' an example of when you would measure volume using km^{3}
- Convince me that the area of a parallelogram is found using base \times height
- (Given a triangle with base labelled 8 cm , height 5 cm , slope height 6 cm) Kenny thinks that the area is $40 \mathrm{~cm}^{2}$, Lenny thinks it is 20 cm^{2}, Jenny thinks it is $240 \mathrm{~cm}^{2}$ and Benny thinks it is $24 \mathrm{~cm}^{2}$. Who do you agree with? Explain why

Length, distanc

Volume
Capacity
Metre, centimetre, millimetre
Tonne, kilogram, gram, milligram
Litre, millilitre
Hour, minute, second
Inch, foot, yard
Pound, ounce
Pint, gallon

- Some pupils may apply an incorrect understanding that there are 100 minutes in a hour when solving problems
- Some pupils may struggle when converting between 12-and 24-hour clock notation; e.g. thinking that 15:00 is 5 o' clock
- Some pupils may apply incorrect beliefs about place value, such as 2.3×10 $=2.30$.
- Many conversions within the metric system rely on multiplying and dividing by 1000. The use of centimetres as an 'extra unit' within the system breaks this pattern. Consequently there is a frequent need to multiply and divide by 10 or 100 , and this can cause confusion about the connections that need to be applied.
- Some pupils may use the sloping height when finding the areas of parallelograms and triangles
- Some pupils may think that the area of a triangle is found using area = base \times height
- Some pupils may think that you multiply all the numbers to find the area of a shape

Geometry

Key concepts (National Curriculum statements)
 \section*{Pupils should be taught to:}

- draw 2-D shapes using given dimensions and angles
- recognise, describe and build simple 3-D shapes, including making nets
- compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
- illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
- recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
- describe positions on the full coordinate grid (all four quadrants)
- draw and translate simple shapes on the coordinate plane, and reflect them in the axes

Notes and guidance (non-statutory)

- Pupils draw shapes and nets accurately, using measuring tools and conventional markings and labels for lines and angles.
- Pupils describe the properties of shapes and explain how unknown angles and lengths can be derived from known measurements.
- These relationships might be expressed algebraically for example, $d=2 \times r ; a=180-(b+c)$.

Possible Themes	Key learning points

- Construct 2 D shapes - Investigate 3D shapes - Explore nets of 3D shapes - Develop knowledge of angles - Apply angle facts to deduce unknown angles - Understand and use Cartesian coordinates - Use transformations to move shapes	- Draw 2-D shapes given angles - Draw 2-D shapes given dimensions and angles - Recognise prisms - Recognise pyramids - Classify 3-D shapes including cylinders, cones and spheres - Draw nets of 3-D shapes - Solve 3-D problems using nets including visualising the edges (vertices) that will meet when folded - Classify 2D shapes using given categories; e.g. number of sides, symmetry - Find unknown angles in a triangle - Find unknown angles in an isosceles triangle when only one angle is known - Find unknown angles in a quadrilateral - Find unknown angles in regular polygons - Solve problems involving 2-D shapes - Know the names and relationships of the parts a circle - Find missing angles where they meet at a point - Find missing angles where they meet on a straight line - Find missing angles where they are vertically opposite - Use known facts to find missing angles - Use coordinates to describe the position of a point in all four quadrants - Use coordinates to plot the position of a point in any of the four quadrants - Draw and translate simple shapes - Carry out a reflection using one of the axes as a mirror line

Children should be able to construct a triangle given two sides and the included angle
> Here is a sketch of a triangle. (It is not drawn to scale).

Draw the full size triangle accurately, below. Use an angle measurer (protractor) and a ruler. One line has been drawn for you.
\qquad

Children should be able to identify, visualise and describe properties of rectangles, triangles, regular polygons and 3-D solids; use knowledge of properties to draw 2-D shapes and identify and draw nets of 3-D shapes
$>$ They should be able to respond accurately to questions such as;
'I am thinking of a 3D shape. It has a square base. It has four other faces which are triangles. What is the name of the 3D shape?' 'Which of these nets are of square based pyramids? How do you know?

> 'Is this a net for an open cube?' How do you know?
\square
compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
Children should be able to make and draw shapes with increasing accuracy and knowledge of their properties.

- They should be able to carry out activities such as
- 'Give me instructions to get me to draw a rhombus using my ruler and a protractor'
- 'On the grid below, use a ruler to draw a pentagon that has three right angles'
- Children should be able to calculate the size of angle ' y ' in this diagram without using a protractor
(Not to scale)
 lustrate and name par
$>$ The circumference is the distance round the circle
$>$ The circumference is the distance round the circle

The diameter is 2 x radius

describe positions on the full coordinate grid (all four quadrants) Children should be able to answer questions such as;
$>\quad$ The two shaded squares below are the same size.
A is the point $(17,8) . B$ is the point $(7,-2)$.
What are the co-ordinates of the point C ?

- Children should be able to draw a shape with corners at given vertices, and describe the properties of the shape. Can they create the same shape where all of the coordinates will be positive? Negative?
They should be able to sketch the reflection of a simple shape in two mirror lines at right angles and find the coordinates of selected points.

Reasoning opportunities and probing questions Mathematical Language

- Show me an example of a net of a cube. And another. And another ...
- What is wrong with this attempt at a net of a cuboid? How can it be changed?

- How many different ways are there to complete these nets?
- Convince me a cylinder is not a prism.
- NCETM: Geometry - Properties of Shapes Reasoning
- Convince me that a rhombus is a parallelogram
- Jenny writes that 'Diameter $=2 \times$ Radius'. Kenny writes that 'Radius $=2 \times$ Diameter'. Who is correct?
- What is the same and what is different: a square and a rectangle?
- Show a pair of possible values for a and b. And another. And another

- Convince me that the sum of angles on a straight line is 180°.
- Show a possible set of values for a, b, c and d.

And another. And another

- Convince me that the sum of angles around a point is 360°
- Convince me that (vertically) opposite angles are equal.
- Kenny thinks that the sum of opposite angles is 180°. Do you agree? Explain your answer.

Protractor
 Measure

Nearest
Construct
Sketch
Cube, Cuboid, Cylinder, Pyramid, Prism
Net
Edge, Face, Vertex (Vertices)
Visualise
Quadrilateral, Square, Rectangle, Parallelogram, (Isosceles) Trapezium, Kite, Rhombus, Delta, Arrowhead
Triangle, Scalene, Right-angled, Isosceles, Equilateral
Polygon, Regular, Irregular
Pentagon, Hexagon, Octagon, Decagon, Dodecagon
Circle, Radius, Diameter, Circumference, Centre
Parallel
Diagonal
Angle
2-D
Grid
Axis, axes, x-axis, y-axis
Origin
Quadrant
(Cartesian) coordinates
Point
Translation
Reflection
Transformation
Object, Image
Congruent, congruence

Possible misconceptions

- Some pupils will read the wrong way round the scale on a typical semicircular protractor, therefore using 180° - required angle
- Some pupils may measure from the end of a ruler, rather than the start of the measuring scale
- Some pupils may think that several repeats of a shape in any pattern constitutes a tessellation
- When given a net of a 3D shape some pupils may think that the number of vertices of the 3D shape is found by counting the number of 'corners' on the net
- Some pupils may think that a 'regular' polygon is a 'normal' polygon
- Some pupils may think that all polygons have to be regular
- Some pupils may think that a square is only square if 'horizontal', and even that a 'non-horizontal' square is called a diamond
- The equal angles of an isosceles triangle are not always the 'base angles' as some pupils may think
- Some pupils may think that these angles are not equal as they are not 'vertical'.

- Some pupils may think that angles that are 'roughly' opposite are always equal, e.g. a = c

- When describing or carrying out a translation, some pupils may count the squares between the two shapes rather than the squares that describe the movement between the two shapes.
- When reflecting a triangle some students may draw a translation
- When carrying out a reflection some pupils may think that the object and image should be an equal distance from the edge of the grid, rather than an equal distance form the mirror line
- Some pupils will confuse the order of x-coordinates and y-coordinates When constructing axes, some pupils may not realise the importance of equal divisions on the axes

Key concepts (National Curriculum statements)

Pupils should be taught to:

- interpret and construct pie charts and line graphs and use these to solve problems
- calculate and interpret the mean as an average.

Notes and guidance (non-statutory)

- Pupils connect their work on angles, fractions and percentages to the interpretation of pie charts.
- Pupils both encounter and draw graphs relating two variables, arising from their own enquiry and in other subjects
- They should connect conversion from kilometres to miles in measurement to its graphical representation.
- Pupils know when it is appropriate to find the mean of a data set.

Possible Themes

Key learning points

- Construct and interpret pie charts
- Interpret pie charts
- Construct a pie chart by measuring angles
- Interpret line graphs
- Construct line graphs

Prerequisite

NCETM - Ready to Progress

interpret and construct pie charts and line graphs and use these to solve problems

$>$ This graph shows the number of people living in a town.
How many people lived in the town in 1985?
number of people the same as in 1950?
Find the year when the number of people first went below 20000.
KS2
> Class 6 did a survey of the number of trees in a country park. This pie chart
Estimate the fraction of trees in the survey that are oak trees. The children Use the pie chart to estimate the number of beech trees they counted.

Possible misconceptions

- Some pupils may think the larger the size of the pie chart, the greater the total frequency
- Some pupils may think if two pie charts have the same section then the amount of data the section represents is the same in each pie chart.'
- Some pupils may confuse the fact that the sections of the pie chart total 100% and 360°
- Some pupils may think that a line graph is appropriate for discrete data
- Some pupils may think that each square on the grid used represents one unit

